BULLETIN D’ETUDES PREHISTORIQUES ET ARCHEOLOGIQUES ALPINES

publié par la

Société Valdôtaine de Préhistoire et d’Archéologie

Numéro spécial consacré aux Actes du IXe Colloque sur les Alpes dans l’Antiquité
Tende, France
15-16-17 septembre 2000

XIII
AOSTE 2002
APPROCHE ÉCONOMIQUE ET INDUSTRIELLE
DU COMPLEXE MINIER ET MÉTALLURGIQUE DE SAINT-VÉRAN (HAUTES-ALPES)
DANS LE Contexte DE L’ÂGE DU BRONZE DES ALPES DU SUD

PIERRE ROSTAN1 ET MAURIZIO ROSSI2
avec la collaboration de
ANNA GATTIGLIA2

INTRODUCTION

Le complexe minier et métallurgique de Saint-Vérans – les Clausis (Hautes-Alpes) est situé dans la haute vallée de l’Aigue Blanche, un sous-affluent du Guil, à une altitude de 2 250 à 2 600 m et à 3 km seulement de la ligne de partage des eaux avec le versant italien du val Varaita (Cuneo), aisément accessible par des cols élevés mais commodes, parmi lesquels en particulier le Col de Saint-Vérans (2 844 m) et le Col de Longet (2 650 m).

La description générale du gisement et l’allure des travaux anciens, ainsi que leur contexte archéologique, ont déjà été décrits par ailleurs3 et nous n’y reviendrons pas ici, non plus que sur les aspects concernant les travaux modernes, sinon de façon épisodique. Nous rappellerons seulement que la séquence stratigraphique fondamentale de l’Abri de Pinilière indique, d’après ses céramiques, que le site a été fréquenté au chalcolithique / bronze ancien, au bronze final / premier âge du fer et à l’époque gallo-romaine. La plus grande partie des travaux d’extraction anciens remonte à la première de ces phases.

Le développement concernera en particulier Saint-Vérans – les Clausis, où les vestiges miniers sont à présent plus importants et mieux conservés qu’ailleurs, mais les résultats des prospections préliminaires menées au cours des dernières années sur les deux versants, externe et interne, des Alpes du Sud indiquent que l’exploitation des ressources minières, notamment cuprifères, a été véritablement généralisée dès les débuts des âges des métaux, avec comme seule contrainte absolue le niveau technologique atteint à chaque époque, par rapport aux caractères géologiques des divers gisements.

Ceci est particulièrement évident dans les Alpes Cottiennes franco-italiennes, région-charnière entre Dauphiné, Savoie, Piémont et Provence, où plusieurs indices d’exploitation des gisements cuprifères et de traitement métallurgique du minerais de cuivre attendent pour l’instant un approfondissement, mais constituent d’ores et déjà une couromne de sites placé à cheval de la ligne de partage des eaux autour du site principal de Saint-Vérans, que l’on ne peut pas considérer comme accidentelle.

Afin de ne pas soustraire de l’espace au sujet central, nous renvoyons, pour l’encadrement général de ces sites, à la documentation présentée à d’autres occasions, ou, en absence, à celle qui sera dressée dans le futur, pour se borner ici à rappeler quelques-unes des nouveautés principales issues tout récemment de prospections ou fouilles encore inachevées et donc inédites pour la plupart.

À Molines-en-Queyras, dans le Vallon du Longis, qui remonte de la vallée de l’Aigue Agnelle en direction de la mine de Saint-Vérans, des scories de réduction de bornite, un fragment de récipient en céramique grossière
avec un finissage de type Besenstrich s.l.4 et deux fragments de tuyère métallurgique en céramique fine (fig. 1, n. 7), dans l’ensemble d’allure très semblable aux matériaux homologues de la Cabane des Clausis (fig. 1, n. 2 à 6), ont été récoltés en surface, en connexion avec une lentille sédimentaire charbonneuse solifluite, ce qui suggère l’existence d’un secteur de travaux miniers pour l’instant non localisé, peut-être situé plus en amont (Col du Longis) que ceux connus actuellement, ou bien plus probablement sur le versant de l’Aigue Agnelle, où des indices cuprifères ont été le siège de travaux de recherches au début du XXIᵉ siècle dans le haut vallon voisin de Clausis (Molines-en-Queyras). Cet établissement métallurgique, dont l’importance n’est pas encore établie, se localise au voisinage de la limite avec le couvert forestier, témoignant sans doute d’une démarche économique avec transport du minerai jusqu’au voisinage des zones d’alimentation en bois; cette configuration a déjà été notée sur l’établissement métallurgique voisin de la Cabane des Clausis. L’établissement du Longis est installé au voisinage d’un petit ruisselau sur le cheminement d’accès au haut vallon. Cette découverte nouvelle confirme la présence d’une multiplicité d’aires de traitement du minerai extrait des diverses branches du gîte de Saint-Véran.

À Freissinières, dans la vallée de la Biaysse, la fouille de la Balme Ruissias, une cavité funéraire collective de l’âge du bronze ancien, a comporté, parmi d’autres, la découverte de treize petits tessons faisant partie d’une tuyère métallurgique en céramique fine (fig. 1, n. 8), dont la scorification témoigne de l’emploi métallurgique effectif de l’objet, sans qu’il soit néanmoins possible de savoir si des activités métallurgiques se sont déroulées dans la cavité ou si, plus probablement, l’objet caractérisait le mobilier funéraire de l’un des individus qui y avaient été inhumés5.

À Puy-Saint-Vincent, en Vallouise, un fragment de céramique fine, appartenant probablement à une tuyère métallurgique (fig. 1, n. 9), a été récolté en surface au cours d’une prospection archéologique du dos rocheux hébergeant la chapelle Saint-Romain, distante de 1 km seulement d’un possible indice de cuivre à l’entrée de la vallée de l’Onde, encore en cours d’évaluation6.

À Guillestre, au quartier de Pré Parenq, dans le terrain d’un jardin, apporté d’une localité inconnue mais nécessairement pas trop éloignée, un amateur a retrouvé un fragment de lingot en cuivre ou bronze de forme plano-convexe (fig. 1, n. 10), comparable d’un point de vue typologique aux exemplaires du bronze final des «dépôts» de Pinerolo (Turino), Pietramarazzi (Alessandria), Larnaud (Jura) et Vénat (Charente)7.

À Villar-d’Arène, dans la haute-Romanche, l’analyse par spectrométrie de masse des deux perles en verre provenant de la fouille de sauvetage de l’atelier de bronzier (jadis «dépôt») de la Croupe de Cassé Rousse, effectuée dans le cadre du projet de recherche «Perles en verre du bronze final de Savoie (et des régions limonitiques) » dirigé par Yves Billaud8 et Bernard Gratuzé9, a révélé une grande similitude de composition (SiO₂ de l’ordre de 75%, CaO de l’ordre de 2%, utilisation d’un fondant mixte sodo-potassique avec K₂O de l’ordre de 9% et Na₂O de l’ordre de 5%) avec les productions de Frattesina (Polessine, Rovigo)10, ainsi que dans le cas plus célèbre de Laprade (Varclusa); ce résultat témoigne d’une véritable importation de la région adriatique et confirme les influences italiennes qui avaient déjà été suggérées, dans ce site daté de la deuxième moitié de la phase moyenne ou du début de la phase récente du bronze final alpin, par la présence d’un fragment de bracelet probablement de type Zerba, de haches à ailerons subterminaux et ergots latéraux et d’une faucille à languette droite et ergot dorsal11.

4 Cf. M. Ceccanti, 1981.
6 Cf. M. Rossi, A. Gattiglia, 1998, p. 448, 450 (fig. 4, n. 4).
7 M. Rossi, A. Gattiglia, F. Fedele, C. Gavazzi, 1995, p. 21-22; M. Rossi, A. Gattiglia, 1996.
8 Département des Recherches Archéologiques Subaquatiques et Sous-Marines (DRASSM), 58bis Rue des Marquisats, F-74000 Annecy (yves.billaud@culture.fr).
10 B. Gratuzé, 1999, p. 3-4, 7 (fig. 1); cf. B. Gratuzé, C. Loubouboutin, Y. Billaud, 1998, p. 18.
En ce qui concerne les découvertes de tuyères, il faut souligner qu’elles constituent l’un des indices les plus explicites du déroulement d’une activité métallurgique, même si l’importance de ces outils est souvent sous-estimée12, peut-être en raison de la difficulté, de la part des céramologues qui ne s’en sont jamais occupés en particulier, d’en reconnaître les fragments à l’intérieur de la population de tessons de chaque site préhistorique: dans cette perspective, il est probable que des tuyères restent parfois méconnues parmi d’autres fragments de céramique fine appartenant à des récipients.

Pour compléter le cadre régional de Saint-Véran – les Clausis, il faut commenter la présence de pétroglyphes représentant des poignards de Remedello et un grand personnage masculin, aprosophe et macrodactyle, dans l’abri sous roche des Oullas (Saint-Paul-sur-Ubaye, Alpes-de-Haute-Provence)13, situé à 6 km seulement des Clausis. Il est possible que cette composition gravée constitue une sorte d’ex voto pour la première découverte d’un des gîtes cuprifères du secteur par un groupe humain ayant la pratique et la nécessité de l’extraction du cuivre, justement pour produire, parmi d’autres choses, des poignards tels que ceux représentés ici. Le gîte en question pourrait être celui même des Clausis, ou un autre, pas encore identifié sur le terrain. L’absence de pétroglyphes préhistoriques au voisinage le plus immédiat des Clausis n’est pas étonnant, puisque, ainsi que l’on a appris dans les dernières années, en haute montagne les pétroglyphes réalisés sur les calcschistes de la Zone Piémontaise ne survivent pas à l’altération, à l’extérieur de cavités telles que l’abri des Oullas, plus longuement que pendant cinq ou six siècles14.

PERSPECTIVE DE L’ÉTUDE

Nous étudions ici l’exploitation préhistorique sous l’aspect minier et cette approche privilégie d’abord les aspects industriels et technologiques par:

- une étude du gisement: morphologie du corps minéralisé, géologie des roches encaissantes, gîtologie, nature et texture des matières exploitées;

- une réflexion sur les contraintes que le gisement minier présente, en particulier sur un plan pratique, de façon à poser les problèmes techniques que l’exploitation devra résoudre; ceux-ci représentent en effet une contrainte du site et sont incontournables, quelle que soit l’époque des travaux miniers; ce n’est qu’après que ces aspects d’ordre purement minier aient été précisés que l’approche archéologique peut se développer de façon à mettre en évidence comment les contraintes naturelles ont été traitées par la technologie du mineur et comment l’analyse économique et industrielle du moment apporte des solutions aux problèmes posés.

Nous examinerons ainsi successivement les différents aspects techniques imposés par le site aux exploitants, avec la géométrie et la conduite des travaux souterrains, leur creusement, l’aération, l’éclairage, le drainage des eaux et enfin l’arrêt de l’exploitation.

LE GISEMENT

Le gisement, longtemps considéré comme un gîte filonien15, est aujourd’hui, depuis les développements apportés à la métallogénie par l’exploration des fonds océaniques, attribué à un dépôt sous-marin hydrothermal de type exhalatif sédimentaire au droit de fractures de la croûte océanique.

Une couche de minerai essentiellement sulfuré (Cu, Zn, Fe... et pour une moindre part Pb, avec des traces de Pt, Sn, Au, Ag, Co, Te), accompagnée de dépôts siliceux de type radiolarites, s’est ainsi mise en place dans une dépression du fond marin de la Téthys, directement sur un substrat de type croûte océanique.

14 M. Rossi, 1999, p. 78-86, 95-104.

15 P. Routhier, 1945.
(serpentine, gabbro, etc...). L’orogénèse alpine avec métamorphisme de basse température et de haute pression et plusieurs phases de plissement et de chevauchement ont conduit à l’allure actuelle du gîte, avec un corps minéralisé d’allure allongée, très redressé, comportant au toit des quartzites à riebeckites (anciennes radiolarites métamorphisées) et au mur des serpentinites ou des chloritoschistes.

Le gisement présente en surface deux branches orientées Nord-Sud subparallèles distantes de 10 à 30 m environ, dont une se suit avec de fortes lacunes sur 1 km vers le Nord jusqu’au Col du Longis16.

La branche Ouest, reconnue sur 50 m de relevé et 90 m d’allongement en surface, disparaît en profondeur, sans doute sur une faille; la branche Est, reconnue sur 50 m d’allongement, n’affleure pas au droit des travaux miniers et ne présente pas de minéralisation sulfuree lorsqu’elle affleure à leur voisinage, mais a été reconnue en profondeur sur 200 m de relevé, avec un appauvrissement constant.

Nous interprétons aujourd’hui cette structure comme une antiforme dans une série chevauchante renversée et non comme une structure synclinale dans une série normale, qui apparaîtrait peu cohérente avec l’allure du gisement et avec la distribution des zones minéralisées riches (fig. 2).

RÉFLEXIONS SUR LA PREMIERE DÉCOUVERTE DU GISEMENT

La branche Ouest des travaux affleurait et a été le siège de la «Tranchée des Anciens»; une partie de la branche Est du synclinal affleure également au droit de la galerie G0, mais avec une minéralisation ténue reconnue par des tranchées anciennes remblayées.

Par contre, la partie exploitée de cette branche ne présente en surface aucun indice de travaux et ne se révèle qu’en un seul point par la présence de pierres volantes attribuables à des haldes (quartzites brûlés, etc...); paradoxalement il s’agit de la plus développée en profondeur (80 m de relevé vertical dans les «travaux anciens»).

La question de la première découverte de cette partie occulte du gisement se pose alors: ancien affleurement masqué actuellement, minéral rencontré par les travaux dans un secteur où les deux branches sont proches au niveau du TB2 (par exemple à l’extrémité Est du TB2, au voisinage d’un important affaissement minier récent), ou bien encore raisonnement géologique qui a pu conduire à rechercher la branche Est au niveau du TB2?

Dans tous ces cas, il est alors vraisemblable que la partie supérieure de la branche Est ait été exploitée en remontant.

Ces travaux anciens ont été recoupés par des travaux modernes à différents niveaux par des galeries et travers-bancs (notés G et TB en fig. 2).

LE MINERAIRE RECHERCHÉ

L’exploitation a concerné de la bornite (Cu₃FeS₄), minéral hyposulfuré qui titre 70% de cuivre-métal et qui domine dans le gisement (à titre de comparaison la chalcopryrite, CuFeS₂, titre 35%); les autres minéraux (chalcopryrite, chalcocite, etc...) ne présentent qu’un développement anecdotique.

L’originalité du gisement consiste dans le caractère massif du minéral, pratiquement sans inclusions ni corps étrangers sur une épaisseur pouvant atteindre jusqu’à 0,4 m, ce qui confère au gîte un caractère tout à fait exceptionnel.

Par ailleurs, la chlorite, présente sous forme d’une bande massive de 0,2 m, accompagnant la bornite en particulier dans les niveaux supérieurs (G0), a probablement été partiellement récupérée. Elle est présente dans les halles anciennes en gros fragments, témoignant d’une absence de récupération systématique, mais montre des traces de creusement aux affleurements.

Les carbonates (malachite) et les produits secondaires issus de l’altération des sulfures sont absents ou bien présents sous forme d’enduits d’épaisseur inframillimétrique et ils n’ont en aucune façon pu être concernés par les travaux miniers.

À la bornite s’adjoignit parfois la galène et plus régulièrement de la blende ainsi que l’hématite et la magnétite dans les riebeckitites qui accompagnent le quartzites.

Le cuivre natif n’a été rencontré que très en profondeur (TB1) par les travaux modernes; néanmoins, des indices très ténus de cuivre natif existent en partie amont du site (G0) dans des chloritoschistes avec des amorce de travaux anciens et deux fragments de cuivre natif à forte teneur en tellure (41 ppm) ont été rencontrés dans une halde ancienne en aval du TB2. Il est ainsi possible que les premiers exploitants aient rencontré du cuivre natif aux affleurements résultant d’une altération superficielle du minerai sulfure; mais aucune évidence formelle n’existe actuellement de cette possibilité et les rapports miniers établis lors du percement du TB1 (très proche de la surface) font déjà état de bornite.

À cet égard, il convient d’insister sur le fait que la bornite représentait un minerai beaucoup plus facile à exploiter que du cuivre natif, car le caractère malléable du métal natif rend inopérante la percussion-broyage classique des maillots à l’extraction, en particulier pour un travail d’extraction manuel où chaque geste du travail ne concerne qu’un faible volume de matière dans le gisement; de plus le cuivre natif exige, dans la préparation mécanique pour l’enrichissement du produit extrait, un travail de séparation de la gangue qui n’est pas aisée non plus et nécessite un broyage intense. La bornite massive issue directement de la percussion représente donc ici un minerai qui n’était pas a priori en concurrence avec le cuivre natif.

GÉOMÉTRIE ET CONDUITE DES TRAVAUX – DYNAMIQUE DE L’EXPLOITATION

La largeur des dépilages est très variable, de l’ordre de 0,4 m dans les passages les plus étroits, et atteint en moyenne 1,2 à 1,5 m avec toutefois des élargissements jusqu’à 3 m dans de petites chambres, sans qu’il soit possible alors de préciser si ces surlarges résultent d’une instabilité du mur de chloritoschistes ou de masses de minerai localement plus développées.

L’examen du niveau 2bis, au seul point où le front de taille ancien peut être observé à la faveur d’un pilier abandonné au toit des travaux modernes, montre une largeur du dépilage de 1 m pour une épaisseur de minerai massif de 0,2 m.

Le creusement des dépilages a été réalisé de façon rigoureuse sélective avec des travaux poussés systématiquement dans le mur de chloritoschistes ou de schistes taqueux très tendres et en évitant au maximum d’attaquer les quartzites à riebeckites de grande dureté au toit du gisement.

L’allure des travaux dans les chambres d’exploitation montre en effet le souci des exploitants d’épouser la morphologie de la base du toit des quartzites pour en récupérer le minerai dans ses moindres parcelles, mais aussi pour éviter le creusement dans les quartzites durs; ce travail technique très sélectif a nécessité un outillage spécifique adapté.

L’allure des travaux est ainsi d’abord dictée par l’irrégularité de l’interface quartzite-minerai massif et ne résulte pas directement de la technique de creusement.

Le contact entre les quartzites du toit et le minerai, particulièrement irrégulier et contourné, témoigne peut-être ainsi de figures sédimentaires (figures de charges), avec l’enfouissement des radiolarites dans des vases métallifères non encore solidifiées.

L’examen des remblais intérieurs révèle une très forte proportion de débris de chloritoschistes ou de schistes séricités fragmentés en débris infracentimétriques.
Ces chloritoschistes sont également, par altération, à l’origine de la matrice argileuse grise qui emmêle les remblais.

Les remblais du fond et les haldues du jour montrent cependant une proportion importante de fragments de quartzites et de riebeckitites attestant de l’existence de travaux dans le mur de quartzite dont l’importance n’apparaît pas directement à l’examen des travaux anciens actuellement reconnus.

Les observations réalisées dans les travaux modernes dans les points où subsiste du minerai (rares piliers de soutènement abandonnés dans les chambres, extrémités latérales des dépilages où la minéralisation s’appauvrit) et le dépouillement des archives minières (procès verbaux de visites du Service des Mines en particulier, etc...) attestent de la permanence de la localisation du minerai sulfuré massif entre les chloritoschistes du mur et les quartzites du toit avec des éponges très nettes.

Ce caractère très constant dans le gisement a certainement été apprécié de l’exploitant préhistorique, par l’économie de moyen qu’il induisait car il représente un guide orientant le travail du mineur, évitant les divagations ou le creusement de recherches dans le stérile et limitant le rapport des volumes abattus minerai/stérile; de plus, cette localisation du minerai massif simplifiait considérablement le travail du métallurgiste en évitant ou limitant l’opération d’enrichissement lors de la chaîne de traitement.

Dans le détail, des imprégnations et des mouches de bornite se rencontrent également dans la riebeckitite et dans les faciès riches en oxydes de fer, ou bien forment des veines et filonsnets mobilisés tardivement lors de la phase tectonique alpine dans les fractures des quartzites; ce type de minerai représente toutefois un volume très limité, voire anecdotique dans la partie connue de l’exploitation.

Aucun pilier de minerai à rôle de soutènement n’a été laissé en place, les seuls «piliers» subsistant correspondent à des «serrées» ponctuelles stériles.

Le toit de quartzites est représenté par un matériau stable et de bonne tenue, alors que les chloritoschistes du mur se dégradent volontiers en lames parallèles au dépilage.

Les remblais sont très développés dans l’exploitation ancienne et occupent souvent la totalité des travaux; les zones actuellement visitables correspondent en effet soit à des cheminements étroits dans des chaos de blocs, soit à des zones où des remblais ont été soutirés lors du creusement des travaux modernes ou lors d’effondrements postérieurs dans les dépilages modernes; ces remblais riches en matériel archéologique s’observent donc soit en place (TB2, TB2bis), soit effondrés en grandes masses et en larges épandages dans les dépilages modernes (essentiellement TB3 mais aussi plus en aval).

Il apparaît que les produits stériles de l’exploitation ancienne étaient stockés sur place dans un souci d’économie de transport, avec un volume de haldues en surface faible par rapport à l’importance des travaux souterrains.

Les documents d’archives ne font en effet que rarement état de vides lors du percement des travers-bancs modernes (aucun au TB1, quelques vides au TB2, peu au TB2bis) et ces comblements ne sont pas attribuables en général à des effondrements des parois du dépilages postérieurs aux travaux.

On remarque de même que les travaux de la branche Ouest sont obstrués par des remblais issus de l’exploitation.

Cette méthode par «tailles remblayées» a nécessité, avec l’approfondissement de l’exploitation, la mise en place de planchers soutenant les remblais et elle représente un des plus anciens exemples connus de cette méthode classique.

Elle a également nécessité la mise en place de planchers et de cheminées permettant de ménager des espaces dans les zones déjà exploitées et remblayées pour le passage des mineurs, l’aérage et pour l’exhaure du minerai.

Les vestiges de tels ouvrages ont été mis en évidence avec:
- des trous de faible profondeur aménagés dans les chloritoschistes avec un diamètre de 0,1 m environ: trois trous disposés horizontalement espacés de 1,5 m environ ont ainsi été mis en évidence dans le parement Est du TB2, témoignant de la mise en place d’un plancher en bois; les poteaux qu’ils recevaient, destinés à supporter les planchers, étaient calés sur le parement opposé (Ouest) entre les nombreux mamelons et irrégularités du toit des quartzites (fig. 2);

- des poteaux en bois, longs de 0,8 m environ, avec un diamètre de 0,1 m environ (fig. 3, n. 2), susceptibles d’être logés dans les trous observés dans les chloritoschistes;

- des planches de bois de quelques décimètres de longueur et de 2 à 3 cm d’épaisseur (fig. 3, n. 1).

D’autres pièces de bois plus importantes, également en mélèze, attestent de l’existence de ces structures mais elles n’ont été étudiées que sommairement car il n’était pas encore envisageable, vu leur taille, de les ramener au jour.

Il s’agit de « planches » de grande longueur (> 1,5 m) et de poteaux de forte section (diamètre 0,15 à 0,2 m), longs de 2 m et plus et présentant parfois une encoche grossière en demi-lune (diamètre 0,1 m) attribuée à des traces d’assemblage.

Il est probable que les importantes accumulations d’éléments de torche, qui se rencontrent de façon locale, en particulier au fond de l’exploitation ancienne, ne constituent pas un rebut mais aient été disposées en couches sur les planchers soutenant les remblais, de façon à retenir les terres et à amortir la chute des matériaux déversés, selon une technique encore actuelle (rameaux de bruyères dans les mines de fluorite des massifs des Maures et de l’Estérel, etc...); ces accumulations font ainsi partie du dispositif d’étayage et de remblaiement.

De tels poteaux et planches peuvent également appartenir à des dispositifs d’étayage des parties instables, ce rôle pouvant être également joué simultanément par la charpente des dispositifs de circulation.

Il se pose par ailleurs la question d’un éventuel travail saisonnier lié à la haute altitude du gisement et en particulier aux fortes précipitations neigeuses; paradoxalement la saison hivernale apparaît comme la plus apte à l’exécution des travaux souterrains car le gel des eaux de surface et l’absence de précipitations liquides d’octobre à mars ou avril réduisent très sensiblement les venues d’eau dans les travaux durant cette période, alors qu’elles atteignent actuellement plus de 3 l/s (soit 260 m³/h) en période printanière et représentent alors une gêne très importante.

De plus, la régularité thermique des travaux souterrains (autour de 8 °C) permet des températures hivernales sensiblement plus clémentes qu’au jour; l’exploitation moderne était ainsi conduite en période hivernale, la période estivale étant consacrée au fonctionnement de l’usine d’enrichissement du minerai qui n’était possible qu’à partir des périodes de dégel.

Ainsi, si toute activité métallurgique préhistorique de surface est certainement exclue en période hivernale par suite du froid et de l’enneigement du fond de la vallée, cette période apparaît donc par contre plutôt favorable aux travaux souterrains situés en haute altitude sur un adret venté qui limite les épaisseurs de neige.

L’ÉCLAIRAGE

L’éclairage des travaux souterrains était assuré par des torches composées d’environ 10 à 15 éléments de pin sylvestre attachés par un anneau en mélèze (fig. 4 et 7); ces éléments présentent une section carrée avec une longueur de 0,2 m et résultent du débitage de troncs importants. Après combustion, certains éléments semblent avoir été récupérés pour la création de nouvelles torches en inversant l’extrémité brûlée, leur longueur souvent faible interdisant la tenue manuelle directe de ces torches.

Il a été rencontré des baguettes correspondant à des branches de saule de diamètre 2 à 3 cm environ, coupées en deux par la longueur avec des extrémités arrondies et une encoche à 2 cm environ de l’extrémité, cette encoche ne concernant que la partie arrondie de la baguette et non la partie sectionnée.
Il s’agit, à notre sens, d’un dispositif de « fourchette », avec deux baguettes reliées à une extrémité par un lien permettant de maintenir, par la souplesse de l’essence choisie, les torches en pin sylvestre tenues ensemble par un lien en mélèze, de façon à permettre une combustion maximale sans risque de brûlure (fig. 4 et 7).

Cette pratique a été décrite au XIXe siècle par L. Simonin17, avec des dispositifs voisins dans les mines d’Amérique du Sud pour maintenir des bougies.

Ces éléments de torches incomplètement consumés constituent des accumulations importantes dans les travaux souterrains, pouvant dépasser le mètre cube.

LE CREUSEMENT

Une partie importante du creusement des travaux souterrains a été réalisée par des moyens mécaniques, un outillage développé ayant été mis en évidence.

L’examen de l’outillage utilisé pour le creusement met en évidence une spécialisation des outils avec:

– des pics en cornillons de chèvre avec des traces de liens à leurs bases (fig. 5, n. 4, et 7), souvent très abîmés à leur extrémité et inaptes au creusement des roches résistantes (quartzites) ou du minéral massif; ces pics en os ont pu être utilisés pour les travaux dans les chloritisochistes, où les maillets classiques étaient inefficaces;

– des « maillets » en roches vertes alpines très compactes (éclogites, prisinites, omphacitites) prélevés sur le versant italien du Mont-Viso (haut val Pô et val Varaita); il s’agit de galets torrentiels sans gros aménagements mais comportant des gorges très peu marquées et toujours très fragmentés par l’utilisation (fig. 6 et 7); ces maillets, qui présentent des traces de percussion et de nombreux éclats, ont dû être utilisés pour les travaux dans les quartzites massifs et subissaient une évolution morphologique importante au cours de leur durée de vie, avec les très nombreux éclats détachés qui témoignent de plus de la violence de la percussion;

– une masse en éclogite qui ne se distingue des maillets que par sa taille plus importante et dont le poids suggère l’utilisation d’un dispositif de type « chèvre » ou chevalet;

– des « pics » en roches vertes alpines très plats, avec des gorges latérales et traces de percussion sur leurs côtés (fig. 5, n. 1-2); cet outillage paraît bien adapté à l’abattage du minéral sulfuré massif et en particulier pour réaliser la récupération soigneuse des placages de minéral dans les replis du toit quartzitique; un pic semblable en quartz a été rencontré dans les haldes du gîte Sud-Est du Peiro à Collobrières (Var; fig. 5, n. 3).

Il s’y adjoint une forte probabilité de réemploi in situ des quartzites présents dans la mine avec des « coins » découps naturellement par le diaclage de la roche et présentant à leur face supérieure plane des traces de percussion. Nous avons ainsi également rencontré sur les différents gîtes de cuivre du Peiro à Collobrières une réutilisation des quartzites encaissant les filonnets de chalcopyrite comme outillage lithique.

Il a été rencontré des pièces de bois de mélèze très plates, 0,5 à 2 cm d’épaisseur, longues de 0,3 à 0,5 m et larges de 0,2 à 0,3 m, avec une extrémité effilée par l’usure, auxquelles un usage de « pelle » a été attribué (fig. 3, n. 3, et 7).

L’absence d’éléments de bois clairement attribuables aux emmanchements des outils de creusement pourrait résulter d’un recyclage dans les feux de mines d’une partie du matériel ligneux.

17 L. Simonin, 1867, p. 465, fig. 127.
Des travaux de creusement thermique ont été également conduits (travaux au feu), comme en témoignent les traces de passage au feu des quartzites (rougissement superficiel lié à la présence de grains microscopiques d’hématite); on observe également des indices de fusion des riebeckitites, certains blocs présentant une face d’aspect brillant bulleux ou scoriacé.

À cet égard, il convient d’éviter la confusion de ces matériaux fondus à la chaleur des feux de mines avec des scories; des échantillons de ce type se rencontrent en effet fréquemment dans les galeries et halles de divers sites travaillés au feu, quelle que soit l’époque (travaux pour galène argentifère de Faravel à Freissinières dans les Hautes-Alpes, de Vallauria à Tende dans les Alpes-Maritimes, etc...), et traduisent la présence dans les roches encaissantes de minéraux sodiques avec un point de fusion peu élevé (albite, etc...).

Les travaux au feu se traduisent, dans ce contexte, par des fragments rocheux présentant une partie fondue d’allure scoriacée alors que le reste de la roche est intact.

Une petite proportion de riebeckite a ainsi été récupérée avec le minerais afin de servir de fondant dans les opérations métallurgiques de traitement de la bornite.

L’AÉRAGE

Un aéfrage naturel a pu fonctionner sur ce versant d’altitude aux forts écarts thermiques journaliers, facilité par la dénivellation de l’exploitation et l’aménagement des zones de circulation entre les tailles remblayées.

LE DRAINAGE

Le drainage et l’évacuation des eaux de la mine représentent un élément majeur de l’organisation de l’exploitation; les venues d’eau actuelles sont fortes dans la mine (hormis en période hivernale) et il n’est pas possible d’envisager un drainage autre que gravitaire vu le flux d’eaux de surface ou de subsurface collecté lors de la fonte des neiges (actuellement de l’ordre de 250 m³/jour dans les travaux préhistoriques); il y a donc nécessité de l’existence permanente d’une évacuation des eaux de mines par un point bas leur permettant de s’écouler au jour.

Il est ainsi vraisemblable que les travaux présentaient au niveau de leur front de taille une pente générale du Nord vers le Sud, peut-être en gradins, comme le montre l’analyse altimétrique de ces fronts appréhendée par les relevés souterrains et les documents d’archives.

La création d’un tel exutoire était a priori immédiate pour les travaux situés en amont du TB2, mais plus complexe en aval, où les travaux miniers se trouvent à une distance horizontale de la surface topographique de plus en plus importante avec la profondeur.

La poursuite des travaux en aval pendant s’est donc nécessairement accompagnée de la création d’une galerie d’écoulement, vus les forts débits qui s’infiltrent depuis la surface dans les travaux en période printanière.

L’examen des documents d’archives ne fait ainsi pas mention de venues d’eau importantes sauf de façon très locale («coups d’eau» redoutés par les mineurs), lorsque les travers-bancs modernes ont percé dans les travaux anciens.

De telles galeries d’écoulement ne s’observent plus aujourd’hui, mais des venues d’eau en surface existent dans les pentes en aval du TB2bis et en aval du fond de l’exploitation ancienne; ces venues d’eau provoquent le glissement de la couverture morainique un peu en contrehauteur de l’Abri de Pinilière et pourraient représenter, au moins partiellement, les eaux collectées par une telle galerie d’écoulement.

La présence d’un tel ouvrage sera intéressante à vérifier dans l’avenir car elle attesterait alors de la réalisation de l’exploitation en profondeur par des travaux au moins localement remontants; de plus l’exécution
de travaux non directement productifs (creusement de galeries au stérile) témoigne une fois encore de la maturité des exploitants.

LA PRODUCTION MÉTALLIQUE

Si l’on retient au minimum une épaisseur de minéral de 0,1 m présente sur 80 m de relevé vertical et 50 m d’allongement horizontal, il vient alors (en négligeant la branche Ouest du gisement) une production de 2 000 t de bornite (densité 5), soit 1 400 t possibles de cuivre-métal.

Avec un volume global des travaux souterrains estimé à 10 000 m³, soit environ 25 000 t de matière, le ratio minéral/stérile abattu s’établit à approximativement 1/25 en volume et 1/12 en poids et le rapport cuivre-métal/stérile à 1/20 en poids.

Si l’on retient à titre d’hypothèse de travail un volume de matériau abattu (roche encaissante et minéral) de 4 m³/mois, le temps de creusement serait alors de 200 ans; cette approche n’a d’autre but que définir l’ordre de grandeur de la durée des travaux, qui a ainsi certainement dépassé un siècle (soit 8 m³/mois, qui représente une valeur a priori déjà très élevée), et demandera à être affinée sensiblement dans l’avenir avec la possibilité de travaux en plusieurs phases. Si cette fourchette de temps est validée, on pourra penser à une production de 7 à 14 t métal/an.

Par ailleurs, nous avons déjà signalé la signature géochimique originale du minéral de Saint-Véran, avec absence d’arsenic et d’antimoine et présence de tellure, ce caractère le rapprochant des minerais corses et italiens voisins ou plus lointains (Montecatini en Toscane) et le différenciant nettement des autres minerais régionaux des Alpes-Maritimes à dominante arseniée et des minerais à dominante antimonieuse du Sud de la France.

L’ARRÊT DE L’EXPLOITATION

Un paradoxe de la recherche réside actuellement dans la meilleure connaissance des parties profondes de l’exploitation grâce aux galeries de recherche du début du siècle, alors que peu d’éléments ne sont accessibles sur la partie la plus ancienne des travaux qui correspond a priori à la partie supérieure du gisement.

Ainsi, la branche Ouest des travaux montre un arrêt précoce avec peu de relevé vertical, alors que les travaux modernes ont rencontré de la bornite immédiatement sous les travaux anciens («Filon de la Remontée»); l’arrêt des travaux anciens ne peut donc être attribué à l’appauvrissement ou à la disparition du minéral.

Il n’y avait pas de difficultés d’évacuation des eaux de mines non plus, la branche Ouest étant peu sujette aux venues d’eau car la branche Est des travaux anciens interrompt le ruissellement superficiel ainsi que les circulations aquifères souterraines épidermiques s’effectuant au toit du substratum rocheux à travers la couverture de moraines et d’éboulis. Ces travaux miniers Ouest sont aussi proches de la surface topographique, avec une forte pente facilitant l’évacuation des eaux de mine.

L’origine de l’arrêt en profondeur de l’exploitation de la branche Ouest est à rechercher à notre sens dans la disparition du mur de chloritoschistes tendres, la minéralisation étant encaissée entre les quartzites et les calcschistes; les travaux auraient pu alors être abandonnés provisoirement pour être poursuivis dans les zones où l’extraction était plus facile.

L’arrêt des travaux dans la branche Est ne résulte pas non plus d’un appauvrissement du minéral (les travaux modernes ont exploité au delà un panneau minéralisé de 130 m de relevé en aval du TB2bis), ni de difficultés de creusement (l’horizon de chloritoschistes tendres demeure très développé partout dans cette branche à l’inverse de la branche Ouest).

Le problème de l’évacuation des eaux de mines a dû devenir de plus en plus délicat avec la profondeur, devant la nécessité de réaliser une galerie d’écoulement de grande longueur (jusqu’à 90 m au droit de l’arrêt des travaux préhistoriques); toutefois, il est vraisemblable qu’un problème technologique
différent est intervenu avec la nécessité, pour donner un exutoire à une telle galerie, de traverser sur une longueur importante (de l’ordre de 30 à 40 m) des terrains morainiques de très mauvaise tenue et de très mauvaises caractéristiques mécaniques en présence d’eau (moraines argileuses héritées de l’altération des Schistes Lustres).

L’obstruction de cette galerie par un effondrement printanier pourrait en effet avoir conduit à une inondation rapide de la partie profonde, puis à la destruction complète de la galerie d’écoulement.

Ce contexte géotechnique particulier a conduit, plus près de nous, à l’effondrement du TB2bis, voisin de la cote du fond des travaux miniers, qui n’a pu être dégagé malgré une intervention à la pelle mécanique; conscient de ce problème, l’exploitant moderne a placé le TB3 plus à l’Ouest, de façon à ne percevoir que le substratum de serpentinites et à éviter les travaux dans les moraines instables.

CONCLUSIONS

Cette analyse, à la lumière des recherches conduites pendant plusieurs années, témoigne d’une exploitation minière préhistorique au caractère industriel très structuré et organisé qui nécessite une gestion d’ensemble rigoureuse du chantier et qui implique de plus une spécialisation poussée du personnel, au niveau de la direction des travaux, de l’extraction, du transport, du boisage et des approvisionnements en matières premières et de leur adaptation au gisement (outillage en pierre, objets en bois, etc...), tous à caractère très spécifique dans l’origine, la nature des matériaux, leur mise en forme, etc...); en particulier il se dessine que les aspects technologiques sont au moins pour parties déterminés directement par la géologie du gisement exploité. Ce caractère se trouve renforcé par les travaux conduits par ailleurs sur les installations métallurgiques de surface.

Avec la concentration des travaux sur un seul gisement important à la haute teneur et au fort tonnage de cuivre, le site est très différent de ceux connus ailleurs dans la région (les quatre gîtes du Piérol, le gîte de Maraval, etc..., à Collobrières, dans le massif des Maures; Dôme de Barrot, Argentera, etc... dans les Alpes-Maritimes), caractérisés par des travaux plus superficiels conduits sur un ensemble de gisements au faible tonnage métallique et avec un minerai très diffus.

À ce titre, le gisement se rapproche des mines du Mitterberg en Autriche où l’exploitation s’est concentrée sur un filon de chalcopryrite sur une grande profondeur.

Il convient de plus de reconsidérer la question d’une recherche préférentielle du métal natif dans les débuts de la métallurgie du cuivre, car son exploitation comporte des difficultés technologiques et surtout un travail d’extraction plus important que certains minéraux sulfurés massifs et que les minéraux oxydés habituels.

L’expérience des différents gîtes minéraux des Alpes Occidentales franco-italiennes et de la Provence conduit aujourd’hui à considérer que tous les gisements comportant des minéraux de cuivre ont fait l’objet de «travaux anciens», le plus souvent dédiés à dater en l’absence de sondages archéologiques, mais fréquemment avec une forte présomption préhistorique (outillage lithique dans les déblais, proximité de sites de plein air, allure des travaux, couverture d’éboulis ou de colluvions sur les haldes, etc...).

Ces travaux miniers ont été conservés lorsqu’ils sont très développés et ainsi n’ont pas été détruits postérieurement par les travaux modernes (Saint-Véran dans les Hautes-Alpes, Bancairon et Cluchelier dans les Alpes-Maritimes, etc...), lorsque la minéralisation est peu importante (les différents sites du Piérol dans le Var), ou lorsque ils sont trop difficiles d’accès (Roua dans les Alpes-Maritimes, etc...); dans d’autres cas, les vestiges ne sont visibles qu’en coupe dans les travaux modernes (Maraval et Cap Garonne dans le Var, etc...).

Ils attestent d’une prospection systématique très ancienne et généralisée des gîtes minéraux de ces massifs, avec des critères d’exploitation ayant conduit à rechercher des minerais à haute teneur (à l’échelle de l’échantillon), même présents en faible volume dans les gisements (veinules de malachites de quelques millimètres d’épaisseur de Maraval, etc...).
BIBLIOGRAPHIE

GIOAN P. 1978. Étude de quelques gîtes métallifères alpins de magnétométrie différentielle à haute sensibilité. Grenoble [thèse de 3ème cycle].

Fig. 1. Indices de métallurgie préhistorique reconnus récemment en Briançonnais.
Tuyères: 1 = Abri de Pinillièse (Saint-Véran); 2 = Vallon du Longis (Molines-en-Queyras); 8 = Balme Ruissias (Freissinières); 9 = Chapelle Saint-Romain (Puy-Saint-Vincent); * = reconstruction hypothétique.
Lingot en cuivre ou bronze: 10 = Pré Parena (Guillestre).
Fig. 2. Coupe géologique schématique de la partie supérieure du gîte de Saint-Véran.
Fig. 3. Fragments d'objets en bois provenant de la mine de Saint-Vérant – les Claussis.
éléments en pin sylvestre débités de troncs importants

baguettes en saule coupées en deux par la longueur

anneau en mélèze

Fig. 4. Essai de reconstruction d'une torche utilisée dans la mine de Saint-Véran – les Clausis et anneau en mélèze provenant des travaux préhistoriques.
Fig. 5. Fragments de pics.
1 ÷ 2 = Saint-Véran – les Clausis, roches vertes alpines; 3 = Collobrières – Peirol Sud-Est, quartz; 4 = Saint-Véran – les Clausis, cornillon de chèvre.
Fig. 6. Fragments de maillets en roches vertes alpines provenant de Saint-Véran – les Clausis.
Fig. 7. Reconstitution grandeur nature des travaux miniers préhistoriques de Saint-Véran - les Claquis et des outils qui y étaient employés, réalisée en 2000 au Musée départemental des Merveilles de Tende à l'occasion de l'exposition «Les Alpes au temps de Minos», d'après les renseignements des auteurs du présent article (photos digitales par Luigi Chiaverina, Datalink, San Bernardo d'Ivrea).